$$ \begin{vmatrix}
a_{11} & a_{12} & \ldots & a_{1n} \\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \ldots & a_{nn}
\end{vmatrix} =
\begin{vmatrix}
\sum_{j=1}^n k_j a_{lj} & \sum_{j=1}^n k_j a_{lj} & \ldots & \sum_{j=1}^n k_j a_{lj}\\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \ldots & a_{nn}
\end{vmatrix} $$
$$ \begin{vmatrix}
a_{11} & a_{12} & \ldots & a_{1n} \\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \ldots & a_{nn}
\end{vmatrix} =
\begin{vmatrix}
\sum_{j=1}^n k_j a_{lj} & \sum_{j=1}^n k_j a_{lj} & \ldots & \sum_{j=1}^n k_j a_{lj}\\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \ldots & a_{nn}
\end{vmatrix} $$
$$ \begin{vmatrix}
a_{11} & a_{12} & \ldots & a_{1n} \\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \ldots & a_{nn}
\end{vmatrix} $$ $$ \downarrow $$ $$ \small
\begin{vmatrix}
\sum_{j=1}^n k_j a_{lj} & \sum_{j=1}^n k_j a_{lj} & \ldots & \sum_{j=1}^n k_j a_{lj}\\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \ldots & a_{nn}
\end{vmatrix} $$
$$ \diamond $$
Se sostituiamo al posto di una qualunque riga o colonna, una combinazione lineare di altre righe o colonne con opportuni coefficienti, il determinante rimane invariato
